Vibration fault detection of fuel pumps using Recurrence Quantification Analysis

Pavol Pecho, Mark Wylie, Martin Bugaj
Introduction

- Looking for critical parts of systems
- Reliability increasing of aircraft systems
- Airplane parts under continuous monitoring
Current status

Tools for reliability increasing

1. Temperature and combustion processes
2. Aerodynamics and pressure
3. Fuel systems
4. FADEC system
5. Vibrations & Vibrodiagnostics
Current status

Continuous monitoring of Vibrations

- Faults indications:
 - Foreign object debris (FOD)
 - Engine wear
 - Icing
 - Unbalance

Vibrodiagnostics

- Method of diagnostic:
 - Fast fourier transform (FFT)
 - Modal analysis
 - Power spectral density function (PSD)
 - Applied on periodic mechanism
Recurrence quantification analysis

Tool of non-linear data analysis

- Based on:
 - Chaos theory attractor
 - Behaviour prediction of system
 - Butterfly effect

- Provide data of large group of parameters

- Complements the methods of traditional vibro-tools
Recurrence quantification analysis

From vibration signal, through phase space to RQA graphs

(Single point of "Q" of \(n\)-dimensional phase space represents the entire state of some physical system, including instantaneous motions of all its parts.)
Experimental verification

- Choosing the object for data providing.
 - Fuel pumps
 - Small jet turbine
 - Pitting experimental stage
 - Bearing faults
 - Additional measurements
Results of the research

Achieved:
- Analysis of current status in field of vibrodiagnostic
- Collect the data from different experiments

Expected:
- Create the complex of parameters standards of RQA related to known faults for early prediction of incoming faults (CONDITION BASED MAINTENANCE)
Thank you

Pavol Pecho
Air Transport Department
University of Zilina
Slovakia

kld.uniza.sk; uniza.sk
pavol.pecho@fpedas.uniza.sk