

A comparison of agent-based and discrete event simulation for assessing airport terminal resilience

INAIR 2019

Nora Metzner, M.Sc.

Institute of Transport Science Chair of Air Transport and Airport Research RWTH Aachen University

Introduction

- High capacity utilization
- High growth rate in aviation
- Disturbances in daily operations (weather, system outage, staff issues)

Introduction

- High capacity utilization
- High growth rate in aviation
- Disturbances in daily operations (weather, system outage, staff issues)
 - → High delays

Introduction

- High capacity utilization
- High growth rate in aviation
- Disturbances in daily operations (weather, system outage, staff issues)

→ High **delays**

- Resilience of a system as evaluation criteria to
 - Understand system correlations
 - Reduce the impact of disturbances

Overview

Resilience in Literature - Definitions

"resilire" = "bounce back" (Latin)

→ Ability of a system to return to the original state after a disruption

Resilience in Literature - Definitions

- "resilire" = "bounce back" (Latin)
 - → Ability of a system to return to the original state after a disruption
- Application areas:
 - Ecology
 - Psychology
 - Material science
 - Economy
 - Infrastructure systems

Resilience in Literature - Definitions

- "resilire" = "bounce back" (Latin)
 - → Ability of a system to return to the original state after a disruption
- Application areas:
 - Ecology
 - Psychology
 - Material science
 - Economy
 - Infrastructure systems
- Absorptive, adaptive and restorative capacity of a system
 - → Robustness
 - → Self-organisation
 - → Rapidity

Resilience in Literature - Quantification

- Robustness:
 - Robustness = p_{min}
 - Relative Robustness = $\frac{p_{min}}{p_0}$

System performance over time, performance function

Resilience in Literature - Quantification

Rapidity:

• Rapidity^(drop) =
$$\frac{p(t_s) - p(t_r)}{t_r - t_s}$$

• Rapidity^(recover) =
$$\frac{p(t'_0) - p(t_r)}{t'_0 - t_r}$$

$$\bullet \quad R^{(1)} = t_0' - t_s$$

$$R^{(2)} = \frac{t_r - t_s}{t_0' - t_r}$$

System performance over time, performance function

System performance over time, delay function

Resilience in Literature - Quantification

Combination of robustness and rapidity

•
$$R^{(3)}(t_{end}) = \int_{t_0}^{t_{end}} \left(1 - \frac{p(t)}{p_0}\right) dt$$

Overview

Resilience of Airport Terminals

Definition:

"An airport terminal is resilient, if it shows absorptive and restorative capabilities, which means that it is robust against disturbances and recovers quickly from them."

Resilience of Airport Terminals

Definition:

"An airport terminal is resilient, if it shows absorptive and restorative capabilities, which means that it is robust against disturbances and recovers quickly from them."

- Resilience indicators:
 - Robustness indicator
 - Rapidity indicator
 - Combination of both (depending on area)
 - Integral indicator

Resilience of Airport Terminals

Resilience indicators:

Overview

Simulation Experiments – Model setup

Simplified terminal model

- Agent-based vs. discrete event simulation
- Stochastic vs. deterministic
- Model design:

Model input and output parameters:

* calculated depending on other input parameters

CAST Anylogic

Simulation Experiments – Parameter variation (CAST Aanylogic

Simplified terminal model

Input parameter variation

Parameter	Range
Occupancy at process station/terminal system [%]	{50; 60; 70; 80; 90; 100}
Passenger arrival rate [PAX/h]	{30; 36; 42; 48; 54; 60}
Duration of disturbance [h]	{0.5; 1; 2; 4}
Affected process station	check-in; security
Processing times at check-in, boarding pass control, security control [sec]	120; 6; 35
Passenger arrival pattern	constant rate; normal distribution

 \rightarrow Simulation of 1 day of operations with disturbance event

→ Calculation of resilience indicators

- Disturbance at check-in
- Influence of
 - Passenger arrival rate
 - System occupancy
 - Duration of disturbance

- Disturbance at check-in
- Influence of
 - Passenger arrival rate
 - System occupancy
 - Duration of disturbance
- Robustness does not show any trend
- Rapidity depends on system occupancy
- Influence of arrival rate at high occupancies

- Disturbance at security
- Influence of
 - Passenger arrival rate
 - System occupancy
 - Duration of disturbance

- Disturbance at security
- Influence of
 - Passenger arrival rate
 - System occupancy
 - Duration of disturbance
- Higher level of rapidity
- Higher values of R^{t3} especially at high occupancies
- Influence of arrival rate at high occupancies

Simulation Experiments – Comparison

Results in CAST Terminal		Re	Results in AnyLogic	
•	Robustness does not show any trend	1	Robustness independent of system occupancy	
•	Rapidity independent of duration of disturbance	ł	Rapidity independent of duration of disturbance	
•	Combined indicators differ for affected check-in/security station	ł	Combined indicators differ for affected check-in/security station	
•	Robustness and <i>R</i>^t show irregularities	•	Analytical calculations verify simulations	

Overview

Discussion and Outlook

- Robustness and rapidity of a system were identified as key indicators for resilience
- Simulation experiments showed that robustness depends on the duration of the disturbance while rapidity depends on the system occupancy
- There are more **irregularities** for **CAST Terminal** simulations
- The **applicability** of the **AnyLogic** simulation results can be shown
- The simple model should be **enlarged** to gain **more insights**

A comparison of agent-based and discrete event simulation for assessing airport terminal resilience

INAIR 2019

Nora Metzner, M.Sc.

Institute of Transport Science Chair of Air Transport and Airport Research RWTH Aachen University